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Abstract Finding complete subgraphs in a graph, that is, cliques, is a key problem and
has many real-world applications, e.g., finding communities in social networks, clus-
tering gene expression data, modeling ecological niches in food webs, and describing
chemicals in a substance. The problem of finding the largest clique in a graph is a well-
known difficult combinatorial optimization problem and is called the maximum clique
problem. In this paper, we formulate a very convenient continuous characterization of
the maximum clique problem based on the symmetric rank-one non-negative approx-
imation of a given matrix and build a one-to-one correspondence between stationary
points of our formulation and cliques of a given graph. In particular, we show that
the local (resp. global) minima of the continuous problem corresponds to the maximal
(resp.maximum) cliques of the given graph.We also propose a new and efficient clique
finding algorithm based on our continuous formulation and test it on the DIMACS data
sets to show that the new algorithm outperforms other existing algorithms based on
the Motzkin–Straus formulation and can compete with a sophisticated combinatorial
heuristic.
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1 Introduction

A clique in an undirected graph is a subset of its vertices such that the corresponding
subgraph is complete. A clique is said to be maximal if it is not contained in any
larger clique. A maximum clique is a clique with maximum number of vertices (or,
equivalently, edges), and themaximumclique problem (MCP) is the problemoffinding
such a clique. The number of vertices in a maximum clique in a graph is called the
clique number of the graph. The MCP is a well-known NP-hard problem, and the
associated decision problem, that is, the task of checking whether there is a clique of
a given size in a graph, is NP-complete [1].

The MCP arises in many real-life applications. The word “clique” in its graph-
theoretic usage was first introduced in [2] where experts used complete graphs to
model groups of people who all know each other in social networks. TheMCP can also
be used to model the problem of clustering gene expression data in bioinformatics [3],
to model ecological niches in food webs [4], to analyze telecommunication networks
[5], and to describe chemicals in a substance that have a high degree of similarity with
a target structure [6].

Since theMCP is anNP-hard problem, it is a challenging task to devise algorithms
to identify large cliques in graphs. Experts use various approaches to tackle this prob-
lem among which the Motzkin–Straus continuous formulation is a well-known and
widely used tool for MCP. There are also a multitude of discrete approaches for the
MCP, which is one of the most fundamental problems in graph theory. Performing a
literature review of this extremely rich literature is out of the scope of this paper, and
we refer the readers to [7–9] for surveys on these methods.

2 Motzkin–Straus Formulation and Outline of the Paper

Let G = (V, E) be an undirected graph where V = {1, 2, . . . , n} is the vertex set,
and let A = (

ai j
)n

i, j=1 be the binary adjacency matrix of G, where ai j = 1 if and only
if (i, j) ∈ E and ai j = 0 otherwise. The Motzkin–Straus formulation of the MCP is
given by [10]

max
u∈Rn+

u� Au such that
n∑

i=1

ui = 1. (MS)

Theorem 2.1 (Motzkin and Straus [10]) The optimal value of the problem (MS) is
given by 1 − 1

ω(G)
, where ω(G) is the clique number of G.

Asmentioned above, many exact and heuristic algorithms have been proposed to solve
the MCP; see for example [11–15]. Some of these methods use the above Motzkin–
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Straus formulation (MS). Note that using a continuous formulation of a combinatorial
problem is a standard approach in global optimization; see, e.g., [16,17] where it is
used for the satisfiability problem.

An important result is that if the (zero) diagonal entries of A are replaced by 1
2 , then

any local (resp. global) maximum of (MS) corresponds to a maximal (resp. maximum)
clique [11]. In this paper, we propose a new continuous formulation for theMCP based
on a symmetric rank-one non-negative matrix approximation problem. Below, we give
an overview of our continuous formulation and its advantages compared to (MS).

Let us define the associated modified adjacency matrix of G by B = A + In , where
In is the identity matrix of dimension n. Moreover, for some parameter d ≥ 0, we
define a (symmetric) matrix Md = (

mi j
)n

i, j=1 as follows:

mi j =
{

1, if bi j = 1,
−d, if bi j = 0.

(1)

We propose in this paper to study the following symmetric rank-one matrix approx-
imation problem

min
u∈Rn+

∥∥∥Md − uu�
∥∥∥
2

F
. (2)

We will show that the optimal solution u∗ is the indicator vector of the maximum
clique. Unlike other formulations of the MCP, we will draw very precise relation-
ships between stationary points of (2) and cliques of the graph G. Our theoretic
result is therefore more complete than for the Motzkin–Straus formulation as we
can also associate to any stationary point of (2) a clique of G. Another differ-
ence with previous formulations is that the feasible set of (2) is the non-negative
orthant onto which it is trivial to project. This is an advantage, for example when
designing nonlinear optimization methods, e.g., projected gradient methods; see
Sect. 4.

The paper is organized as follows. In Sect. 3.1, we introduce our continuous for-
mulation (2) for the MCP. In Sect. 3.2, we show that

• the local (resp. global) minima of (2) coincide with the maximal (resp. maximum)
cliques of a given graph G (Theorems 3.1 and 3.2), and

• every stationary point of the continuous optimization problem (2) coincides with
a feasible solution of the MCP (that is, a clique); see Theorem 3.5.

In Sect. 4, we propose a new and efficient clique finding algorithm based on our con-
tinuous formulation and show that the limit points of this algorithm coincide with
cliques of the graph G. In addition, we present various experimental results that
show competitiveness of the new algorithm compared to other clique finding algo-
rithms.
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3 Continuous Characterization of the MCP Using Symmetric
Non-negative Matrix Approximation

In this section, we derive a new continuous formulation of the MCP using symmetric
rank-one non-negative matrix approximation.

3.1 Symmetric Rank-One Non-negative Matrix Approximation and the MCP

The so-called (discrete) vertex formulation of the MCP [18] is given by

max
u∈{0,1}n

n∑

i=1

ui such that ui + u j ≤ 1 + ai j ∀i �= j. (3)

The i th vertex belongs to a feasible solution of (3) if and only if ui = 1; otherwise,
ui = 0. The constraint ui + u j ≤ 1+ ai j ensures that if there is no edge between the
vertices i and j , that is, if ai j = 0, then either ui = 0 or u j = 0. Hence, there is a
one-to-one correspondence between the feasible solutions of (3) and the cliques of G.

The objective function of (3) can be rewritten as follows. Observe that maximizing∑
i ui reduces to requiring as many ones as possible in the vector u, which will lead to

having more ones in the matrix uu�, hence maximizing
∑

i, j ui u j . Let B = A + In

and u be a feasible solution of (3). Since B and u are binary and ui u j ≤ bi j ∀i, j , we
have that

n∑

i, j=1

ui u j =
n∑

i, j=1

(ui u j )
2 =

n∑

i, j=1

bi j (ui u j )
2 = ‖B‖2F −

∥∥∥B − uu�
∥∥∥
2

F
,

where ‖ · ‖F is the Frobenius norm. In fact,

∥∥∥B − uu�
∥∥∥
2

F
= ‖B‖2F − 2〈B,uu�〉 + 〈uu�,uu�〉,

where 〈·, ·〉 is the Frobenius inner product. Hence, (3) is equivalent to

min
u∈{0,1}n

∥∥∥B − uu�
∥∥∥
2

F
such that ui + u j ≤ 1 + bi j ∀i �= j, (MC)

where the objective function is equal to the number of vertices outside the clique, and
its minimization is therefore equivalent to maximizing the vertices contained in the
clique. Hence, (MC) approximates B via a symmetric rank-one binary approximation.
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3.2 New Continuous Formulation of the MCP

We start off by defining the following problem: given a matrix M ∈ R
n×n , find its

best rank-one non-negative matrix approximation, that is, solve

min
u∈Rn+

∥∥
∥M − uu�

∥∥
∥
2

F
. (R1NM)

Given a parameter d ≥ 0, a graph G, and its adjacency matrix A ∈ {0, 1}n×n , we
define the associated modified adjacency matrix by B = A+ In as before and a matrix
Md = (1 + d)B − d1n×n as in (1), where 1n×n is the n-by-n matrix of ones. Then,
we define the following instance of (R1NM):

min
u∈Rn+

F(u) =
∥∥∥Md − uu�

∥∥∥
2

F
. (R1NdM)

In this paper, we analyze (R1NdM) as a continuous formulation of the MCP.

Remark 3.1 (Similarity with the Motzkin–Straus Formulation) Up to normalization of
u, our continuous formulation can be equivalently written as

max
u∈Rn+

u�Mdu such that ‖v‖22 ≤ 1, (4)

see [20] for the details. The objective is similar to (MS) except that the adjacency
matrix A was modified to Md and that the constraint is now in the �2 norm instead of
the �1 norm. Note that the optimal objective function value of (4) is ω(G).

Interpretation of (R1NdM) and organization of the section. The parameter d
in (R1NdM) can be interpreted as a penalty parameter that is used to satisfy the
constraint ui u j ≤ bi j for all i, j . In fact, the −d entries in the matrix Md penal-
ize the fact that entries in uu� are positive when corresponding to the zero entries
of B: for each i �= j such that bi j = 0, the term in the objective function is
(−d − ui u j )

2 = d2 + 2dui u j + (ui u j )
2. Therefore, as d increases, the nondiag-

onal entries of uu� corresponding to the zero entries of B are encouraged to be closer
to zero (see Lemma 3.4).

In the next sections, we show that for d ≥ n, the local (resp. global) minima of the
continuous optimization problem (R1NdM) are binary and coincide with the maximal
(resp. maximum) cliques of the graph G, respectively (Theorems 3.1 and 3.2), or
equivalently with the optimal solutions of the discrete problem (MC). Moreover, we
show that the other stationary points of (R1NdM) get arbitrarily close to the cliques
of G as d increases (Theorem 3.5).

Remark 3.2 (Link with the Maximum Edge Biclique Problem) Given a bipartite graph,
the maximum edge biclique problem (MBP) is the problem of finding a complete
subgraph (that is, a biclique) with maximum number of edges. Gillis and Glineur [19]
proposed a continuous formulation of the MBP which is a (non-symmetric) rank-one
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matrix approximation problem. Our proofs will use some arguments from [19], andwe
will follow a similar organization to prove the one-to-one correspondence between the
maximal (resp. maximum) cliques of the graph G and the local (resp. global) minima
of (R1NdM).

3.2.1 Definitions and Notations

Let us introduce the definitions and notations that will be used to prove themain results
of this paper. Given a positive real number d, we define the following three sets of
vectors:

• Sp, the set of nontrivial stationary points of (R1NdM),

Sp := {u ∈ R
n+ | u satisfies (5),u �= 0}.

• Lm, the set of nontrivial local minima of (R1NdM).
• Gm, the set of nontrivial global minima of (R1NdM).

By definition, Gm ⊆ Lm ⊆ Sp.
Let us also define the following three sets of binary vectors:

• Fs, the set of feasible solutions of (MC),

Fs := {u ∈ R
n+ | u is a feasible solution of (MC)}.

• Cm, the maximal cliques of G: u ∈ Cm if and only if u ∈ Fs and u corresponds
to a maximal clique of G.

• CM, the maximum cliques of G: u ∈ CM if and only if u ∈ Fs and u corresponds
to a maximum clique of G.

By definition, CM ⊆ Cm ⊆ Fs.

3.2.2 Key Lemmas

Given an n-by-n symmetric matrix M ∈ R
n×n , its best symmetric rank-one approxi-

mation can be obtained by solving the following unconstrained minimization problem

min
u∈Rn

∥
∥∥M − uu�

∥
∥∥
2

F
. (R1U)

In this section, we will prove various results regarding (R1U) that will be crucial for
the remainder of the paper. The following lemma is well known although we do not
know the reference for the original proof; see, e.g., [21, Theorem 1.14]. The proof can
also be found in [20].

Lemma 3.1 The local minima of (R1U) are global minima. All other nontrivial sta-
tionary points are either saddle points or local maxima.
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Lemma 3.2 For the (symmetric) matrix Md defined in (1) with at least one entry
equal to −d with d ≥ n, any optimal solution u of (R1U) with M = Md is such that
u contains at least one non-positive entry.

Proof Suppose u is an optimal solution of (R1U) such that uu� > 0. Note that the
diagonal entries of Md are equal to one and that Md contains at least one −d entry;
hence, Md contains at least two −d entries. Let r denote the number of entries equal
to −d in Md with r ≥ 2. Therefore, since u > 0, we have ‖Md − uu�‖2F > rd2.
By assumption, there exists (i, j) such that i �= j and mi j = −d, and, by symmetry,

m ji = −d. Consider the vector v ∈ R
n such that vi =

√
d
2 , v j = −

√
d
2 , and

vk = 0 ∀k �= i, j . We have that vivi = v jv j = d
2 , v jvi = viv j = − d

2 , and
vkvl = 0 ∀k, l �= i, j ; hence,

‖Md − vv�‖2F = 2

(
d

2
− 1

)2

+ 2

(
d

2

)2

+ (r − 2)d2 + n2 − (r + 2)

< rd2 + n2 − d2 − (r + 2)
r≥2≤ rd2 + n2 − d2 d≥n≤ rd2,

a contradiction. Therefore, any optimal solution u of (R1U) must contain at least one
non-positive entry. �

3.2.3 Local and Global Minima of (R1NdM)

In this section,we characterize the relationship between the local (resp. global)minima
of (R1NdM) and the maximal (resp. maximum) cliques of a given graph G.

Lemma 3.3 Let G = (V, E) be a graph with at least one edge, with binary adjacency
matrix A and modified adjacency matrix B = A + In, and d ≥ n. Then, Lm ⊆ Cm.

Proof Let Md ∈ {−d, 1}n×n be the matrix defined in (1). Let u ∈ Lm. To show
Lm ⊆ Cm, we need to show that u is a feasible solution of (MC) and u corresponds
to a maximal clique of G. The support of a vector u is defined as the set of indices
corresponding to the nonzero entries of u. Let us denote the (non-empty) index set of
the support of u by S and define u′ = u(S) and M ′

d = Md(S, S) to be the subvector
and the submatrix with indices in S and S × S, respectively. Let us also define G ′ as
the graph whose modified adjacency matrix is given by B ′ = B(S, S). Since u is a
local minimum of (R1NdM) and the objective functions of (R1NdM) and (R1NCG′)
differ only by a constant (and also u�Mdu = u′�M ′

du
′), we have that u′ is a local

minimum of (R1NCG′)

min
u′∈R|S|

+

∥∥
∥M ′

d − u′u′�
∥∥
∥
2

F
. (R1NCG′)

To show that u is a feasible solution of (MC), we first suppose there is a −d entry in
M ′

d . Sinceu
′ is positive, it is located in the interior of the feasible domain of (R1NCG′).
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Therefore, it is a local minimum of the unconstrained problem (R1UCM′)

min
u′∈R|S|

∥∥
∥M ′

d − u′u′�
∥∥
∥
2

F
. (R1UCM′)

Thus, Lemma 3.1 implies that u′ is a global minimum of (R1UCM′). Moreover, since
M ′

d contains at least one −d entry, Lemma 3.2 asserts that u′ contains a non-positive
entry, a contradiction. Therefore, M ′

d does not contain a −d entry and as a result we
have M ′

d = 1|S|×|S|. Since u′ is a global minimum of (R1UCM′) and M ′
d = 1|S|×|S|,

we must have u′u′� = M ′
d = 1|S|×|S|, u′ = 1|S| and u is binary. Therefore, u is a

feasible solution of (MC), that is, u ∈ Fs.
Finally, let us show that u corresponds to a maximal clique of G. Assume that u

corresponds to a clique of G which is not maximal, that is, assume without loss of
generality that ∃i /∈ S such thatu+ei corresponds to a larger clique ofG where ei is the
unit vector whose i-th entry is equal to one. For any 0 < ε ≤ 1, let v = u+ εei . Then,

we have
∥
∥Md − vv�∥

∥2
F ≤ ∥

∥Md − uu�∥
∥2

F , since the entries of Md corresponding to
edges contained only in the larger clique {i} × S are 1’s and are approximated by
values between 0 and 1 in vv�, whereas they are approximated by zeros in u. This
contradicts the assumption that u is a local minimum. Hence, u must correspond to a
maximal clique of G, that is, u ∈ Cm. �

The next result shows that all the maximal cliques of a given graph G correspond
to the local minima of (R1NdM).

Theorem 3.1 If G is a graph with at least one edge and d ≥ n, then Cm = Lm.

Proof Since d ≥ n, by Lemma 3.3 we have Lm ⊆ Cm. The proof that Cm ⊆ Lm is
very similar to that of [19, Theorem 1]. It can be found in [20]. �

The next result states the strong relationship between the global solutions
of (R1NdM) and the maximum cliques of a graph G.

Theorem 3.2 If G is a graph with at least one edge and d ≥ n, then Gm = CM.

Proof Let u ∈ Gm. Then, by definition u ∈ Lm and by Theorem 3.1 u ∈ Cm. Hence,
u is binary. Next, observe that the objective functions of (R1NdM) and (MC) differ
only by a constant:

∥∥∥Md − uu�
∥∥∥
2

F
=

∥∥∥B − uu�
∥∥∥
2

F
+ (n2 − ‖B‖2F )d2.

Therefore, u ∈ Gm if and only if u ∈ CM. �
Corollary 3.1 The optimal value of (R1NdM) is ‖Md‖2F − ω(G)2.

Proof This follows directly from Theorem 3.2: an optimal solution u of the prob-
lem (R1NdM) is the indicator vector corresponding to a maximum clique. �
Corollary 3.2 (R1NdM) is NP-hard.

Proof By Theorem 3.2, finding the global optima of (R1NdM) is equivalent to solving
(MC) which is equivalent to solving (MS), which is NP-hard [1]. �
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3.2.4 Stationary Points and Maximal Cliques

Here, we prove an important result that tells us how the maximal cliques of a given
graph G are related to the stationary points of (R1NdM) and to the feasible solutions
of (MC).

First, we derive the optimality conditions and stationary points of (R1NdM). The
first-order optimality conditions of (R1NdM) are

u ≥ 0, ∇uF(u) = uu�u − Mdu ≥ 0 and u � ∇uF(u) = 0, (5)

where � is the Hadamard product, that is, a vector u is a stationary point of (R1NdM)
if and only if it satisfies the optimality conditions (5). The optimality conditions given
in (5) can be written equivalently as

u = 0 or u = max

(

0,
Mdu

‖u‖22

)

= [Mdu]+
‖u‖22

. (6)

In fact, if ui = 0, then (Mdu)i ≤ 0 (the gradient is non-negative), while if ui > 0, then
ui = (Mdu)i (the gradient is equal to zero). Hence, the nontrivial stationary points of
(R1NdM) satisfy u = [Mdu]+

‖u‖22
.

Theorem 3.3 If G is a graph with at least one edge and d ≥ n, then Cm = Fs ∩ Sp.

Proof We need to show that if u ∈ Cm, then u belongs to both Fs and Sp. If u ∈ Cm,
then u is binary (Theorem 3.1). Let S denote the non-empty support of u. By definition,
we have that u ∈ Fs and u corresponds to a maximal clique of G, that is,

�i such that ui = 0 and mi j = 1 ∀ j ∈ S. (7)

It remains to show that u ∈ Sp. For all i such that ui = 0, by (7) at least one entry of
Md(i, :) is −d. Therefore, we have Md(i, :)u ≤ (n − 2) − d<0 since d ≥ n. Since u
is binary, we also have

ui = 0 and Md(i, :)u < 0 or ui = 1 = ‖u‖1
‖u‖22

. (8)

Note that for all i ∈ S we have mi j = 1 if and only if j ∈ S. Thus, mi j u j = 1 if and
only if i, j ∈ S. As a result, for all i ∈ S,

Md(i, :)u =
n∑

j=1

mi j u j =
∑

j∈S

mi j u j =
∑

j∈S

u j =
n∑

j=1

u j = ‖u‖1. (9)

By combining (8) and (9), we obtain

ui = 0 and Md(i, :)u < 0 or 1 = ui = ‖u‖1
‖u‖22

= Md(i, :)u
‖u‖22

. (10)
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We can rewrite (10) asu = max

(
0, Mdu

‖u‖22

)
, which is exactly the stationarity conditions

(6) of (R1NdM) for u �= 0. Therefore, u ∈ Sp. Hence, u ∈ Cm if and only if
u ∈ Fs ∩ Sp. �

Theorem3.3 implies that if an algorithmconverges to a stationary point of (R1NdM)
and that this stationary point is binary, then it corresponds to a maximal clique.

3.2.5 Limit Points of (R1NdM) and Feasible Solutions of (MC)

This section shows how close the stationary points of (R1NdM) are to the feasible
solutions of (MC). First, we present two lemmas and recall a Theorem from [19]
about bipartite graphs. The next lemma shows that entries of uu� corresponding to
the −d entries of Md are approximated by zeros as d gets larger.

Lemma 3.4 For any graph G and u ∈ Sp, if mi j = −d and ui u j > 0, we have

0 < u j <
‖u‖1
d+1 and 0 < ui <

‖u‖1
d+1 .

Proof Since ui and u j are positive, the optimality condition (6) gives

0 < ui‖u‖22 = Md(i, :)u = −du j +
∑

r �= j

mir ur

≤ −du j +
∑

r �= j

ur = −du j + (‖u‖1 − u j
) = ‖u‖1 − (d + 1)u j .

Therefore, 0 < u j <
‖u‖1
d+1 . By symmetry, the same holds for ui . �

Below, we state and prove a lemma which is useful to draw an important relationship
between stationary points of (R1NdM) and feasible solutions of (MC).

Lemma 3.5 Let M be a symmetric matrix. If u is a stationary point of
minu≥0 ‖M − uu�‖2F , then (u,u) is a stationary point of the problem
min(u,v)≥0 ‖M − uv�‖2F .

Proof If u = 0, the proof is complete since (0, 0) is a stationary point of (MC).
Otherwise, since u is a nontrivial stationary point of minu≥0 ‖M − uu�‖2F , we have
u = max

(
0, Mu

‖u‖22

)
; see (6). Moreover, if (u, v) is a nontrivial stationary point of

minu,v≥0 ‖M − uv�‖2F , by the first-order optimality conditions we have [19, Eq. (6)]

u = max

(
0, Mv

‖v‖22

)
andv = max

(
0, Mu

‖u‖22

)
.Hence, ifu is a nontrivial stationary point

of minu≥0 ‖M −uu�‖2F , then (u,u) is a nontrivial stationary point of minu,v≥0 ‖M −
uv�‖2F (note that the converse is true only when u = v). �

Theorem 3.4 ([19], Theorem 4 and Corollary 2) Let Ĝ be a bipartite graph and
Â ∈ {0, 1}m×n be its binary biadjacency matrix. For some constant d̂ ≥ 0, define
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M̂d = (1 + d̂) Â − d̂1m×n, where 1m×n is an m-by-n matrix of ones. Then, when d̂
goes to infinity, every stationary point of

min
u∈Rm+,v∈Rn+

‖M̂d − uv�‖2F , (11)

gets arbitrarily close to some feasible solution of

min
u∈{0,1}m ,v∈{0,1}n

‖ Â − uv�‖2F such that ui + v j ≤ 1 + âi j ∀i, j. (12)

More precisely, for any d̂ ≥ 2max(m, n)‖ Â‖F , we have for any stationary point (u, v)
of (11) that

min
ub,vb

‖uv� − ubv�
b ‖F <

max(m, n)‖ Â‖F

d̂ + 1
,

where (ub, vb) is a feasible solution of (12).

We can now prove our main result linking the stationary points of (R1NdM) and
the feasible solutions of (MC).

Theorem 3.5 For any graph G, every stationary point of (R1NdM) gets arbitrarily
close to some feasible solution of (MC):

max
u∈Sp

min
uc∈Fs

‖u − uc‖2 <
n‖B‖F

d + 1
,

where B is the modified adjacency matrix of G and d ≥ 2n‖B‖F .

Proof If the graph G does not have any edge, Sp = ∅ and the proof is complete.
Otherwise, let Md be the symmetric matrix defined in (1), and let u ∈ Sp. Then,
combining Lemma 3.5 (with E = Md ) and Theorem 3.4, we have

min
uc∈Fs

‖uu� − ucu�
c ‖2F <

n2‖B‖2F
(d + 1)2

.

Observe the following:

min
uc∈Fs

‖uu� − ucu�
c ‖2F = min

uc∈Fs
‖uu� − ucu� + ucu� − ucu�

c ‖2F
= min

uc∈Fs
‖(u − uc)u� + uc(u� − u�

c )‖2F
≥ min

uc∈Fs
‖uc(u� − u�

c )‖2F = min
uc∈Fs

‖uc‖22‖u − uc‖22.

Therefore, since the vector uc is binary and satisfies ‖uc‖22 ≥ 1, we have
minuc∈Fs ‖u − uc‖2 <

n‖B‖F
d+1 . �

123



J Optim Theory Appl

Corollary 3.3 Let us define Φ : R
n+ → {0, 1}n : u → Φ(u), such that Φ(u)i = 0 if

ui ≤ 0.5 and Φ(u)i = 1 if ui > 0.5 for all i . Then, for any graph G, d ≥ 2n‖B‖F ,
and any u ∈ Sp, we have that Φ(u) ∈ Fs.

Proof This follows directly from Theorem 3.5 since the stationary point u is at
Euclidean distance at most n‖B‖F

d+1 ≤ n‖B‖F
2n‖B‖F +1 < 1

2 from a binary indicator cor-
responding to a clique of G. �

4 Proposed Algorithm and Experimental Results

In this section, we propose a new and efficient clique finding algorithm using our
continuous formulation (Sect. 4.1). Our algorithm is a projected gradient scheme
applied on (R1NdM), using the Armijo procedure for selecting the step sizes. Then,
we provide numerical comparisons on the DIMACS data sets in Sect. 4.2.

4.1 Projected Gradient Descent with Armijo Procedure for the Continuous
Formulation (R1NdM)

Consider a non-empty closed convex set Ω ⊂ R
n and a continuously differentiable

function f : R
n → R on Ω . The projected gradient method for solving the mini-

mization problem minx∈Ω f (x) is the following [22, Sec. 2.3]: choose some initial
x(1) ∈ Ω and, for k = 1, 2, . . ., compute

x(k+1) = PΩ

[
x(k) − s(k)∇ f (x(k))

]
,

where x(k) is the kth iterate, PΩ is the projection into Ω , and s(k) is the step size taken
at the kth step. The Armijo condition requires the step s(k) to satisfy the condition

f (x(k+1)) − f (x(k)) ≤ σ ∇ f (x(k))�
(
x(k+1) − x(k)

)
, (13)

for some parameter 0 < σ < 1. To guarantee a sufficient decrease in the objective
function at each iteration, the Armijo procedure takes s(k) = βm(k)

s̄, where s̄ > 0 is
a constant, 0 < β < 1 is a parameter, and m(k) is the smallest non-negative integer
satisfying the above condition. The limit points of a projected gradient method that
uses this procedure are stationary points of minx∈Ω f (x) [22, Proposition 2.3.3]; see
also [23]. Searching for s(k) can be time-consuming. Since s(k−1) and s(k) usually
take values of the same order of magnitude, using s(k−1) as an initial guess for s(k)

is usually rather efficient in practice; see, e.g., [24]. Algorithm 1 implements this
idea on our continuous formulation (R1NdM) of the clique problem. The parameter
d in (R1NdM) is initialized to some value (see Sect. 4.2.1 for a discussion) and is
increased progressively (by a factor γ > 1 at each iteration) until it reaches the upper
bound D = 2n‖A + In‖F ≥ n that guarantees (i) the one-to-one correspondence
between local and globalminima of (R1NdM)with themaximal andmaximumcliques
ofG (Theorems 3.1 and 3.2), and that (ii) rounding stationary points of (R1NdM) gives
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Algorithm 1 Clique finding algorithm
1: Require: Adjacency matrix A ∈ {0, 1}n×n , γ > 1, 0 < σ < 1, 0 < β < 1;
2: Initialize: u, d, α;
3: Set: D = 2n‖A + In‖F ;
4: while stopping criterion is not satisfied do

5: ∇F(u) = 2
[
u

(
‖u‖22 − 1

)
− (1 + d)Au + d1n‖u‖1

]
;

6: Fo = −u�Mdu + 1
2 ‖u‖42 = −(1 + d)u� Au − (1 + d)‖u‖22 + d‖u‖21 + 1

2 ‖u‖42;
7: while Armijo condition is not satisfied do
8: un ← max (0, u − α∇F(u));
9: Fn = −u�

n Mdun + 1
2 ‖un‖42 = −(1 + d)u�

n Aun − (1 + d)‖un‖22 + d‖un‖21 + 1
2 ‖un‖42;

10: if Fn − Fo > σ∇F(u)�(un − u) then
11: α ← βα;
12: else
13: α ← α√

β
;

14: end if
15: end while
16: u ← un;
17: d ← min(γ d, D);
18: end while

cliques of the graph G (Corollary 3.3). The motivation to increase d progressively is
the fact that (R1NdM) is an easy problem for small d. In fact, for d = 0, Md = B is
non-negative which implies that (R1NdM) is equivalent to computing the eigenvector
of Md associated with the largest eigenvalue of Md which can be solved efficiently
(combining Perron–Frobenius and Eckart–Young theorems; see, e.g., [25]). In fact,
we have observed that trying to solve (R1NdM) directly for a large value of d leads in
general to worse solutions. Note that the expressions in lines 5, 6, and 9 of Algorithm 1
use (i) half the objective function of (1) minus the constant ‖Md‖2F which gives
‖Md − uu�‖2F − ‖Md‖2F = −2u�Mdu + ‖u‖42, and (ii) the fact that the matrix Md

is equal to (1 + d)(A + In) − d1n×n so that

u�Mdu = u� ((1 + d)(A + In) − d1n×n)u

= (1 + d)u� Au + (1 + d)‖u‖22 − d‖u‖21.

This avoids the explicit construction of Md , which is not practical if A is sparse
(since Md is dense). Since every limit point of Algorithm 1 is a stationary point
of (R1NdM), theirΦ roundings, as defined in Corollary 3.3, are cliques of the graph G.
On all the numerical experiments performed in Sect. 4.2, Algorithm 1 always con-
verged to a maximal clique.

Theorem 4.1 Every limit point of Algorithm 1 is a stationary point of the problem
(R1NdM) and the Φ rounding of this stationary point is a clique of the given graph G.

Proof A projected gradient algorithm that uses the Armijo procedure converges to a
stationary point [23]. Since d will attain the value D in a finite number of steps, the
second part of the theorem follows from Corollary 3.3. �
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4.2 Experimental Setup and Numerical Results

In this section, we assess the performances of the new algorithm (Algorithm 1) com-
pared to two clique finding algorithms based on the Motzkin–Straus formulation from
[12,15] (note that these papers do not study the relationship between cliques and the
stationary points of the continuous formulation they consider). We will also compare
our method with the combinatorial algorithms of Grosso et al. [9] which are effec-
tive in solving the MCP. Grosso et al. proposed two iterated local search algorithms
based on fast neighborhood search that use multiple restarts and several thousands of
node selections per second. Section 4.2.1 describes the parameters, initial values, and
stopping criteria used for our algorithm (we used the default values for the algorithms
in [12,15]. Section 4.2.2 presents the numerical results onDIMACS data sets, showing
that Algorithm 1 performs well on these problems. For more numerical experiments,
we refer the reader to [20].

4.2.1 Parameters, Initial Values, and Stopping Criteria

We use random initialization and stop the algorithm when the condition 0 ≤ ui ≤
0.001 or 0.999 ≤ ui ≤ 1.001 for all i is satisfied. In addition, we used the values

β = 0.5, σ = 0.01 and initialized α with α0 = 0.1 ‖u0‖2
‖∇F(u0)‖2 for all experiments. To

make the search for the step sizesmore practical,weonly try to updateα for amaximum
of five steps per iteration. An initial value of the parameter d (in Algorithm 1) that is
close to the value that balances the positive and negative entries in Md (that is, choosing
d such that ‖max(Md , 0)‖F ≈ ‖max(−Md , 0)‖F )) works well in practice [19]. For

this reason, we use the initial value d0 = ‖A+In‖2F
n2−‖A+In‖2F

for d and then increase it by a

factor γ = 1.1 at each iteration until it reaches the value D.We have also experimented
with SVD initialization, that is, we initialized the algorithm with the best rank-one
approximation of the non-negative modified biadjacency matrix B = A + In (which
is the optimal solution for d = 0) and found out that the results are similar to those
obtained with random initialization.

Note that the computational cost of our algorithm is O(|E |) per iteration, where
|E | is the number of edges in the graph G (assuming |E | > |V |). Most of the time is
spent for computing the matrix-vector product Au, and it can be checked that all other
operations run in at mostO(|V |) operations where |V | is the number of vertices in G.

4.2.2 Numerical Results

We now present the numerical results. All tests are performed using MATLAB
(R2012a) on a laptop Intel(R) Core(TM) i7-6500U CPU @2.50GHz 2.59GHz 8GB
RAM. The MATLAB code is available at https://sites.google.com/site/nicolasgillis/.

Table 1 reports the computational costs and clique sizes for the DIMACS data sets
from the Web site http://iridia.ulb.ac.be/~fmascia/maximum_clique (maintained by
Franco Mascia). In this experiment, we include a combinatorial approach designed
by Grosso et al. [9] in which we directly copy the results from their paper (namely,
the computational times reported in their paper are scaled to a Pentium IV 2.4 GHz
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Table 1 Clique size and computational time in seconds (in brackets) for the different algorithms on the
DIMACS instances

Data set (n, |E |, ω(G)) [15] [12] Algorithm 1 [9]

brock200_1 (200, 14834, 21) 18 (0.14) 18 (0.14) 19 (0.05) 21 (0.02)

brock200_2 (200, 9876, 12) 8 (0.03) 9 (0.52 10 (0.05) 12 (0.02)

brock200_3 (200, 12048, 15) 10 (0.03) 11 (0.09) 13 (0.06) 15 (0.01)

brock200_4 (200, 13089, 17) 13 (0.03) 15 (0.09) 15 (0.04) 17 (0.13)

brock400_1 (400, 59723, 27) 21 (0.06) 21 (0.25) 24 (0.08) 27 (9.26)

brock400_2 (400, 59786, 29) 21 (0.09) 18 (0.41) 24 (0.08) 29 (1.20)

brock400_3 (400, 59681, 31) 20 (0.13) 18 (0.28) 23 (0.09) 31 (0.23)

brock400_4 (400, 59765, 33) 20 (0.08) 24 (1.03) 24 (0.07) 33 (0.09)

brock800_1 (800, 207505, 23) 16 (0.19) 19 (1.58) 18 (0.36) 22.64 (247)

brock800_2 (800, 208166, 24) 16 (0.14) 16 (1.00) 19 (0.34) 24 (59.24)

brock800_3 (800, 207333, 25) 18 (0.25) 18 (1.77) 19 (0.35) 25 (64.04)

brock800_4 (800, 207643, 26) 17 (0.19) 16 (1.73) 19 (0.34) 26 (27.10)

C500-9 (500, 112332, ≥57) 46 (0.13) 12 (0.03) 50 (0.12) 57 (1.41)

C1000-9 (1000, 450079, ≥68) 51 (0.75) 5 (0.13) 63 (0.47) 67.91 (100)

C2000-5 (2000, 999836, ≥16) 13 (0.91) 14 (8.44) 14 (2.09) 16 (1.6)

C2000-9 (2000, 1799532, ≥80) 62 (3.86) 7 (0.31) 73 (1.98) 76.57 (563)

C4000-5 (4000, 4000268, ≥18) 13 (4.47) 3 (1.80) 16 (7.97) 18 (304.18)

ham.10_2 (1024, 518656, 512) 1 (0.001) 1 (0.03) 512 (0.13) 510.64 (2.14)

keller6 (3361, 4619898, ≥59) 31 (10.17) 15 (1.78) 33 (8.83) 59 (118.61)

MANN_a27 (378, 70551, 126) 1 (0.02) 1 (0.03) 123 (0.10) 126 (0.005)

–_a45 (1035, 533115, 345) 1 (0.13) 1 (0.01) 333 (0.91) 344.02 (373)

–_a81 (3321, 5506380, ≥1100) 1 (0.95) 1 (0.27) 1061 (9.24) 1098 (987)

p̂1000-1 (1000, 122253, ≥10) 8 (0.14) 9 (1.13) 10 (0.53) 10 (0.06)

p̂1000-2 (1000, 244799, ≥46) 44 (1.91) 8 (0.25) 46 (0.72) 46 (0.01)

p̂1000-3 (1000, 371746, ≥68) 63 (0.75) 3 (0.13) 62 (0.63) 68 (0.07)

p̂1500-1 (1500, 284923, 12) 9 (0.34) 10 (1.84) 10 (1.35) 10 (5.86)

p̂1500-2 (1500, 568960, ≥65) 61 (2.09) 22 (0.33) 61 (1.65) 65 (0.07)

p̂1500-3 (1500, 847244, ≥94) 88 (2.39) 24 (0.30) 92 (1.57) 94 (0.09)

san400_0.5_1 (400, 39900, 13) 2 (0.03) 2 (0.03) 7 (0.04) 13 (0.03)

san400_0.7_1 (400, 55860, 40) 15 (0.05) 6 (0.05) 22 (0.07) 40 (0.04)

san400_0.7_2 (400, 55860, 30) 5 (0.02) 2 (0.03) 15 (0.04) 30 (0.03)

san400_0.7_3 (400, 55860, 22) 1 (0.05) 1 (0.03) 13 (0.04) 22 (0.05)

san400_0.9_1 (400, 71820, 100) 55 (0.13) 12 (0.06) 53 (0.04) 100 (0.002)

san1000 (1000, 250500, 15) 7 (0.03) 4 (0.06) 8 (0.23) 15 (2.57)

sanr400_0.5 (400, 39984, 13) 11 (0.03) 12 (0.16) 13 (0.10) 13 (0.14)

sanr400_0.7 (400, 55869, 21) 18 (0.03) 19 (0.25) 21 (0.09) 21 (0.02)

The best and second best clique sizes are highlighted in bold and underlined, respectively
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with 512MB RAM running Linux, and the value of the clique corresponds to running
their algorithms 100 times and taking the average of the maximum and the minimum
clique as the average clique size). Two heuristics were proposed by Grosso et al.,
but we consider the one with (a slightly) better performance in terms of clique size;
see the results of Algorithm 2 in Table 4 of their paper. For 13 out of 36 cases,
Grosso et al. finds larger cliques faster than the other methods, whereas on other 9
cases this method is found to be very expensive. In most cases, the two algorithms
from [12,15] are faster than the other methods, but the solutions are poor. When
comparing the clique sizes of the continuous approaches, Algorithm 1 outperforms
the other two clique finding algorithms from [12,15].When comparing all approaches,
the discrete method due to Grosso et al. provides cliques having larger sizes in many
cases except in one case (hamming10_2) where it gives the second best value (with
Algorithm 1 scoring the best value) and in other five cases where there is a tie with
Algorithm 1. The success of Grosso et al. can be attributed to the fact that it uses
a fast neighborhood search in combination with multiple restarts which is based on
selecting several thousands of nodes per second (on average 250,210 nodes per second
for the tested DIMACS instances). On the contrary, our algorithm is a simple single-
start method which could be improved using standard techniques such as genetic
algorithms or simulated annealing, for example similarly as it was done very recently
for the (closely related) non-negative matrix factorization problem [26]. Designing
such heuristics based on our approach is a direction for further research and out of the
scope of this paper.

4.3 Generalizations of Algorithm 1

In this paper, we focused on finding cliques in unweighted graphs. However, Algo-
rithm 1 can be straightforwardly used in the following two more general scenarios,
which are implemented in the code available online:

• Weighted graphs. If the graph is weighted (that is, a weight is assigned to each edge
of the graph indicating the importance of the links between vertices), Algorithm 1
can be used and will try to identify a clique whose corresponding submatrix has
the largest possible first singular value.

• Finding dense subgraphs. In case one is looking for dense subgraphs instead of
fully connected ones, the parameter D can be kept smaller. In fact, when d is small,
zero entries of the matrix B can be approximated by positive ones. At the limit, for
d = 0, Algorithm 1 computes the first singular vector u of Md which is positive
(given that Md is a primitive matrix, that is, M p

d is positive for some p [27]). The
density of the graph found by Algorithm 1 will depend on the value of D; see also
[19] where the idea is experimented in the case of bicliques.

5 Conclusions

In this paper, we introduced a new continuous formulation of the maximum clique
problem (MCP) using symmetric rank-one non-negative matrix approximation;
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see (R1NdM). We showed a one-to-one correspondence between the local (resp.
global) optimal solutions of our continuous formulation and the maximal (resp. maxi-
mum) cliques of a given graph (Theorems 3.1 and 3.2). In addition, we showed that the
other stationary points can be made arbitrarily close to the cliques of the graph (Theo-
rem 3.5). We then proposed a new clique finding algorithm (Algorithm 1), applying a
standard projected gradientmethodonour continuous formulation, and showed that the
limit points of this algorithm coincide with the cliques of a given graph (Theorem 4.1).
Finally, we tested our algorithm on 36 benchmark instances from the DIMACS data
sets. The experimental results were compared with two other continuous clique find-
ing algorithms based on the Motzkin–Straus formulation and one discrete approach
based on a fast neighborhood search that uses multiple restarts. The results show that
Algorithm 1 outperforms the two continuous methods and gives reasonable results
compared to the discrete approach given that it is a single-start local search heuristic.
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